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Feynman Path Integrals in the Young 
Double-Slit Experiment 

H .  Y a b u k i  l 

Received September 26, 1986 

An estimate for the value of the nonlinear interference term in the Young 
double-slit experiment is found using the Feynman path-integral method. In our 
time-dependent calculation the usual interference term becomes multiplied by 
1 + e with e proportional to cos(2mhL/hT),  where h is the distance between 
the two slits (holes) and L is the length of the shortest trajectory of electrons 
between the source and the observation point. 

1. I N T R O D U C T I O N  

The interference experiment  done by Young  with the experimental  
ar rangement  o f  Figure 1 clearly showed the wave nature o f  light. The same 
type o f  experiment  with an electron beam indicates that  electrons have the 
proper ty  o f  wave in accordance  with the predict ion o f  quan tum mechanics:  
The wave funct ion ~/ for  Figure l a  is the sum of  the two wave functions 
~ and ~2 corresponding to the situation o f  Figures lb  and lc,  respectively, 

~, = ~,, + 02 (1) 
This equali ty (1) is often stated as an example o f  the superposi t ion principle 
o f  quan tum mechanics.  

Strictly speaking, however,  the wave functions ~, ~1, and ~//2 a r e  the 
solutions o f  the SchrSdinger  equat ion with different bounda ry  condit ions;  
they correspond to the experimental  arrangements  o f  Figures la,  lb,  and 
lc,  respectively. Therefore,  the wave functions ~, ~hl, and ~h2 belong to 
different Hilbert  spaces, and equat ion (1) does not  hold  in a r igorous sense. 

Another  way to see the problem with equat ion (1) is to apply  the 
viewpoint  o f  the Feynman  path  integral. In  this picture we expect contribu- 
tions f rom paths like that  shown in Figure 2, but  these are unlikely to be 
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Fig. 1. Experimental arrangements. 
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included in equation (1). The contribution coming from the paths looping 
through the two slits are expected to be of relatively order h n with n >- 1. 
Therefore, equation (1) is indeed a very good approximation for the wave 
function @. 

In the present paper we are going to calculate the quantity @ - @1 - 02 

in the Feynman path integral approach. In the next section we develop our 
calculational technique, and in Section 3 we apply it to the double-slit 
problem in a simplified two-dimensional case. Its generalization to the 
three-dimensional case is straightforward and is discussed in Section 4. 

2. CALCULATION FOR TYPICAL COMPOSITIONS OF PATHS 

Let us consider our problem in two-dimensional space with coordinates 
chosen as in Figure 2. The Lagrangian of our system is taken to be 

L = m(22+ y 2) - V(x, y) (2) 
Z 

where 

A A AA 
f f~ 

V(x, y) = (the shaded area in Figure 2) (3) 
otherwise 

We are going to approach the problem by applying the method of the 
Feynman path integral. In our case the particle moves freely except at the 
screens. Therefore, the key ingredient in our calculation is the free propa- 
gator K(b, a) defined as 

K(b, a) = [Dx] e x p o S [ b ,  a] (4) 

where S[b, a] is the free action 

S[ b, a ] = f 'b 2 { 2( t )2 + y,( t )2} dt (5) 

the symbol [Dx] stands for the path integral measure, and a = (t,, A ) =  
(t~; xa, Ya), etc. Explicitly we have (Feynman and Hibbs, 1965) 

K(b, a) = 27rib - ta). expim{(x b_xa)2+(yb_y.)2} 
--  2h(tb -- t.) (6) 

In order to estimate the contribution coming from paths such as that 
shown in Figure 2 it is necessary to have a method to calculate the transition 
amplitude for a composition of paths. For this purpose we make use of the 



162 Yabuki 

Y A  
I 
I 
1 
! 

I 

1 
! 

screen I screen 2 

Fig. 2. A typical path looping through the two slits. The following notations will be used in 
the text: So (source)=(xo, Yo); ~1 (upper  slit)= {(xl, y~)tO<- x<-~$, X/2<- y<-A/2+ e}; ~2 
(lower slit) = {(xz, y2)t0~ x -< t$, - Z / 2 -  e --<- y - -A/2} ;  $3 (observation point  on screen 2) = 
(x3, Y3), I = distance between S o and  ~1 (or ~2); A = distance between ~ l  and ~2; tl = distance 
between ~ l  and $3; 4 = distance between Se: and $3; L~ = I + tl; Z 2 = I + I 2. 

following identity: 
, 4  

K(b, a) = j K(b, c)K(c, a) axe dye (7) 

with 4 being fixed in the interval 

tb:> tc> 4 (8) 
By inserting a trivial equality 

1 
tb -- 4 = d4 (9) 

into (7), we get 

K(b,a)= 1 ft~ f - -  dt, dx, dy~ K(b, c)K(c, a) (10) 

When we are interested in calculating contributions from paths which 
go from A to B passing through a given small region ~r (Figure 3a), we 
get the corresponding transition amplitude by restricting the space integral 
in (10) to the domain cr 

d4 dx~dy~g(b, c)K(c, a) (11) K ( b ' a ) ~ - t b - 4  ~to ~ y ~ r  
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By changing the order of integration, the integral over tc is estimated in 
Appendix 1 to be 

= 1 tl, b 
l l  tb - ta dtc K(b, c)K(c, a) 

. - + 2 
~ ( ~ )  3/2(tb__ t ,_3/21.1/21_1/2 x Fm(Ib~ 1~) ~ 

4: be ca e P L t ~ ' t ~ ' ( b - ~ ) J  (12) 

where 

and 

lb~ = [(xb-- x~)2+ (Yb-- y,)2]~:2 

lc~ = [(xc - xa)2+ (y~ - ya)2] '/2 (13) 

Since we consider only the case where the region <r is small, the 
right-hand side o f  (1i) can be written as 

K(b, a)~ ~ 1~r �9 (14) 

where I~r is the area of the domain :r In order for the approximation (14) 
to be valid, it is necessary that the phase of (12) does not vary much in the 
domain ~r Let us take two points C and C'  in cr Then the phase of (12) 
differs between these two points C and C'  by 

m 
t~) [(/~,c+ l'~)2-(Ibc +/c~) 2] 2h( tb 

m 
- t a ) ( l ' b c +  ' 2h(t b _ l~+Ibc+lea)(l'b~--Ib~+l~a--lc~) 

m 
h (  t b - ta )  (lbe + l ca ) (A lbc  + A l c a )  (15) 

Therefore, in (1!) we should demand that variation of one of the two- 
dimensional (spatial) integration variables which is responsible for 
elongation or contraction of the path be restricted by 

h(tb-t~) 
m(Ib~ + l~) (16) 

In this way, to have consistency of calculation, we are led to the restriction 
that 

loCI <<. O( h ) (17) 
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In the same way we obtain in Appendices 2 and 3 the transition 
amplitudes corresponding to Figures 3b and 3c: 

dta dxa dya K(b,  d )K(d ,  a)~ 
K(b,  a ) ~  - tb _ ta t . . . .  Yd)~ 

[2~rih\ -2 . ~ ~--21--1/21--1/21--1/2 

[ m(lbd+la~+lca)2] 
X(Iba+lacWlca)-l/2exp i -2-h(~b--~a) .] (18) 

K ( b , a ) ~  l f ' b f (  - dt~ dxe dy~ K(b,  e)K(e,  a )~ ,  
tb-- ta t~ Xe,y~)~ 

r .  m(tb~ + led + ldc +/ca)2"l 
X(lbe+l~a+la~+l~)-lexp L t 2h(tb----- t~) J (19) 

where we have for I~l and I~l the same type of restriction as that for I~1 
in (17). 

3. NONLINEAR INTERFERENCE TERM IN THE 
DOUBLE-SLIT EXPERIMENT 

We apply the results obtained in the preceding section to our problem 
of calculation of the nonlinear interference term in two dimensions. We 
consider the case where in Figure 2 the initial condition is such that our 
wave function ~b(t=O,A) is well localized at A = S o  (source). Various 
notations to be used below are defined in Figure 2. In the first place we 
note that the wave function ~bl for Figure lb is given in our approach by 

~bl(T, $3) = N .  K ' ( t =  T, $3; t = 0 ,  S0)~1 (20) 

Here the prime on K means that the propagator for (2), which we denote 
by K'(b, a), is to be used in calculating this quantity, which is a generali- 
zation of (11) to the interacting case (2). For paths going from So to $3 via 
6el, it will be a good approximation to replace K'(b, a) by the free propagator 
K(b,  a). Then by making use of (14) and (12) we get 

4,,(T, $3) ~ S l~ l l  T-3/21-1/2171/2 exp , ,  2 - ~ j  (21) 

The wave function corresponding to the paths of the type shown in 
Figure 2 is now given by 

~b~(T, $3) = N .  K ' ( t  = T, $3; t = 0 ,  S0)~e,~e2s~ 1 (22) 

In this case the approximation of the correct propagator K'(b, a) by the 
free one K(b,  a) might not be good. In Figure 4 three types of paths for 
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the free propagator K(b, a) are shown: Types (i) and (iii) represent paths 
which lie completely on one side of the line AB, while type (ii) represents 
paths which cross the line AB at least once. The contribution from the type 
(i) paths is denoted by Ko(b, a), which is clearly equal to the contribution 
from the type (iii) paths, and that from the type (ii) paths is denoted by 
Kl(b, a). Then we have 

K(b, a)= 2Ko(b, a) + Kl(b, a) (23) 

Suppose that, in the limit where the screen 1 is thin (8 is small), we 
take A c 501 and B ~ 5~ that is, the AB in Figure 4 represents a thin screen. 
Then we would have 

K'(b, a)=ZKo(b, a) (24) 

if we take our screen AB to be such that type (ii) paths be forbidden. In 
this situation the propagator to be used for 0~(T, $3) in (22) for paths 
between 501 and 502 is Ko(b, a). If we use K'(b, a) of (24) instead of Ko(b, a), 
the resulting expression for qJ~(T, $3) will also include contributions coming 
from paths shown in Figure 5. 

Now, unfortunately we have no means to calculate Ko(b, a) exactly. 
We suppose optimistically that in the free propagator K(b, a), (23), the 
contribution from Kl(b, a) is small compared with that of Ko(b, a), and 
that K'(b, a) ~ K(b, a) by (23) and (24). [The contribution from the typical 
path (ii) shown in Figure 4 is the same as that from the path (a) of type 
(i) in Figure 4, and we can always find shorter paths in category (i). 
Therefore, considering in the Euclidean space-time, we may say that at least 
Ko(b, a) is fairly larger than Kl(b, a).] Then we approximate the propagator 
to be used in (22) by K(b, a). It is assumed that this approximation will 
retain the essential feature of the wave function qJ[(T, $3). 

Then the wave function 0~(T, $3) coming from paths shown in Figures 
2 and 5, which is considered to be a correction to 01(T, $3), is given by use 
of (19) to be 

2rrih -s/:z 2 r. re(L1 + 2A)2"] 
O~(T, S3 )~N( - - -~ )  lb~ "-2~-77 J 

(25) 

We have, therefore, from (21) and (25) 

0,(T, $3)+ q,~(T, $3)--- 01(T, &)[1 + AI(T, $3)1 

[2~rih\ -1 . 
=~Ol(r,&) 1+~--~--) l&{l&l 
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Three types of paths for the free propagator. The path (a) belonging to type (i) gives 
the same contribution as that given by the path shown in (ii). 

where 

( ~_im )-~ [ 2mAL~'~ A,(T, $3)= 2___h~ 1~01[ [b~ -' e x p ~ i ~ ]  (27) 
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Fig. 5. Three types of paths other than that of Figure 2 passing 5e t twice and 5e 2 once. 

We note that, in spite of the appearance of h-1 in (27), the correction term 
A1 is of order h, taking into account (17). 

In the same way we obtain for the wave function ~b2(T, $3) of 
Figure lc and its correction @~(T, $3) 

~b2( T, $3) + 0~( T, $3) = ~b2( T, $3)[1 + A2( T, $3)] 

2crib - 1  
A2(T~ S 3 ) ~  ( T )  [,5~IIISP2[T-1A-1L2Iexp( i2mhL2] 

~T ] 
(28) 
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The total probability to find a particle at point $3 on screen 2 (Figure 2) is 

= t0 , (1  + a , )  + 0~(1 + a2)l 2 

161[2(1 + 2 Re A1) + 162120 + 2 Re A2) + 2 Re (qf*O2) 

+ 2 Re [ r q,2(A* + A2)] (29) 

where 

r S~)OdT, S3) 

~,N1215r ~--~)-3T-31-' l;'/21;'/2 exp( "tm~)L~- L~\ 

[2~h\-3T-31-11-~,/21~,/2ex p imL&TL ( ) 
a?(T, S3) + ad  T, S~) 

1 1 1 ~ [ 2m}~L2"~ [ 2m~Ll~ 

2 h 16e~ I ISe2[T_lX_IL_ 1 / mX AL\ ~- - -  e x p ~ i ~ ) 2 i  " [2mAL'~ s,nv  ] (31) 

and we have put 

L = (L1 + L2)/2. AL = L 2 -  L1 (32) 

The main interference term 2 R e ( 0 * 0 2 )  is proportional to 
c o s ( m L A L / h T ) ,  and its correction term is proportional to 
cos(mL AL/hT) sin(2mhL/hT). The existence of this correction might be 
detected experimentally owing to its characteristic dependence on AL/Tif 
one could perform a two-dimensional experiment. 

4. D I S C U S S I O N S  

It is straightforward to extend the above analysis to the three- 
dimensional case with two holes on the screen. The free propagator K (b, a) 
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is now given by 

K(b,a) = [2r - -  [ exp/'rim{(Xb--Xa)2+(Yb--Y~)2+(Zb--Za)2}']~ - -  
.J L h( tb -- t~) 

(33) 

When we look back at calculations in the appendices, we readily find by 
following powers of (2~rih/m) and doing time integrations that the wave 
function correction factor A 1 is approximately 

A I ( T  ~ $ 3 ) ~  r-2A-215e11 15~21 e x p ~ t ~ )  (34) 

where in this case 15ei[ is the volume of the hole i on the screen, and we 
have the same bound as in (17). [The bound (17) came mainly from the 
limit of variations along the separation of the~two holes, i.e., the y integration. 
However, we made also the assumption of thin screen, which then restricts 
the x integration across the screen. Therefore, practically we have another 
power of h on the right-hand side of (17), and thus AI(T, $3) of (34) is 
expected to be of order h2.] 

In this way we see that the interference term has a correction propor- 
tional to cos(2mAL/hT). It will be interesting if experimentally one can 
detect this small oscillatory behavior of the nonlinear interference term. 

It will also be interesting if one can perform time-independent (or 
time-dependent) perturbation calculation for our problem in the 
Schrfdinger equation. In two-dimensional space we might split the potential 
V(x, y) in (2) and (3) as 

V(x, y) = Vo(x, y) + Va(x, y) + V2(x, y) (35) 

where 

and 

We then take 

0 V f~ 
Vo(x, y) = otherwise (36) 

V I ( x , y ) = ( o V  for (x, y) ~ 5r 
otherwise (37) 

V2(x,y)={oV f~ (x' Y) e ~e2 
otherwise (38) 

m .2 
Lo =~-(x +)~2) _ Vo(x, y) (39) 
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as unperturbed Lagrangian, and expand Green's  functions as powers of  
Vl(x, y) and V2(x, y). For example, the propagator  K'(b, a) of our particle 
is expanded as 

i; 
K'(b, a) = Ko(b, a ) - ~  Ko(b, c){Vl(c)+ V2(c)}Ko(c, a) dxcdy~dtc 

+ - Ko(b, c)[Vl(c)+ V2(c)]Ko(c , d)[Vl(d)+ V2(d)] 

• Ko(d, a) dx~ dy~ dt~ dxd dyd dtd +'" �9 (40) 

where Ko(b, a) here corresponds to Lo of (39). Then the wave function ~bl 
appears as of  order V~, and ~ as of  order V~V2. For this purpose we have 
to calculate tunneling amplitudes for the Lagrangian Lo. We have not yet 
pursued this investigation to produce concrete results. 

APPENDIX 1: E S T I M A T I O N  OF T H E  INTEGRAL (12) 

We are going to calculate the integral 

1 f tb 11 = ~ dt~ K(b, c)K(c, a) 
tb - -  ta  to 

=[27rih~-Et l 1 [ r  dt [ .  m [1~,  12~ ~] 
\--m--/ T Jo t ( T - , )  e x p [ ' 2 - h ~ , t t - ~ S - ] - t J ]  

where we tlave put 

T=tb - t~  

t= t~ - t~  

12a = (xc - x,)  2 + (Yc - Y a )  2 

12c = (Xb -- X~)2+ (Yb --Yc) 2 

(A1) 

(A2) 

Here we note that the integral in (A1) is not well defined for /ca = 0 or 
lbc = 0. When /ca r 0 and lb~ ~ 0, we expect rapid oscillations of  the phase 
of  the integrand for t = 0 and t = T providing us with a converging 
expression. 
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By changing variables, we rewrite I1 as 

{27Ti~ -2 2 " I 1 Z2) -I [ ('Z--Z0)2q 
I ,=\---~--]  ~ e  'e -1(1-- exp ir 1 - z  2 J d z  (A3) 

where 

2t 
z = l - ~  

T 

= rn(Ica +/bc) 2 (A4) 
2hT 

bc - -  / c a  
Z 0 - - - -  lbc +Ica 

Since the integral in (A3) is dominated by the contribution from the 
integrand around z=  Zo, we approximate as follows: 

{27ribS-2 2 " I i  ' exp[isc!z'z~ I , ~ \ - - ~ - ]  -~e '~ ( l -z~)- '  1-z~ Jdz  

-~e ' r  - '  o exp i~: l_z2  j d z  

2 2 ' '2  = -~ ei~(1 - Zo2) -1 

= ( ~ ) -3/2T-3/217al/2161c/2 ei* (A5) 

This estimate wilt be correct up to a factor of order 1 for ~: not too small, 
and the varying phase of I1 will be mainly given by exp(i~:) of (A5). 

APPENDIX 2: ESTIMATION OF THE INTEGRAL IN (18) 

We calculate the integral appearing in (18) in a similar way as in 
Appendix 1: 

1 I 'b 12 - dta K(b, d)K(d, a)~ 
lb - -  ta  t~ 
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=(2~im--~-h)-5/2l~ll~l/2l~l/21I;dtt-3/2(T-t)-I 

m r(lacq-lca) 2 12d 7] 
x exp]. i2--~ l t ~- T - t  

= (.___~_)27rih .-'/~11~ T-S121a~121~la/223/2ei~ f~ 

Xexp[i~(} -z~ 2 ] 

dz(1 - z)-3/2(1 + z) -1 
1 

(A6) 

where 

T = tb - -  ta 

t = t d - t a 

l~d - l d ~  - l ~ o  
Zo - (A7) 

lac + Ic~ + Ibd 

m(l~ + lc. + lb~) ~ 
2hT 

and other notations will be obvious. With the same type of approximation 
as in Appendix 1 we get 

/21rib\-5~2 . _ 1 2 ~ - - - ~ -  ) I~lT-5/21dle/21~2/223/2ei'(1--Zo)-a/z(l+zo)-l['trl(li z2)]l/2 

- -  I ~~ "a~ "~ "ha ~'bd +la~+l~) -1/2ei~ (A8) 

where in the last line we have replaced (Iba + lac + I c a ) / ( l d c  + l c a )  by 1, since 
our estimate is good at best up to a factor of order 1. 

APPENDIX 3: ESTIMATION OF THE INTEGRAL IN (19) 

We calculate the integral appearing in (19) in a similar way as in 
Appendices 1 and 2: 

1 I tb dt e K(b, e)K(e, a ) ~  I 3 - t b - t ~  to 
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= i<el ~ ~ ' r ' - l l - i / 2 t -1 /2 t - l /2 t t ,  ea ,de "ca tied - t - ldc+ tea)  -112 

Ior '~ 
f.mp(led+Sde+C:)~_ ,~o ])  

x dt t - 2 (T  - t ) - '  exp].t~-~ L. t T -  t J J  

12rr ih\ -3  ~r 
= t--m--) I [~t22T-31-jJ/21s)121-~la12(led+ldc+l<a)-l12e~ 

I], exp[b7 (z- z-0-~ 
X dz (1  - z ) -2 (1  + z)  - '  1--7" 2 j 

I~1 ~ ~ ~~ ",d ,d< "~ t',d + dd~+ lc~)-'12e i" 

Yabuki 

_1 F wi( 1 _ zo~)l ,/2 
• ( 1 -  z~ + z~ L r#- J 

/27r ib \  -5/~ 
~" ~.u z ~be l ed  tdc  t ca  t lbe t'--m--) 1~ I ~,r-5/2,-1/2,-lfz,-1/2,-l/2, ,  +led+lde+l~,)- lei~ 

where 

T = t b - 6  

t = 6 - 6  

ZO= Ibe + led + lac + lc~ 

m( lbe + led + ljc + Ico) 2 
r l -  2 h T  

and in the last line in (A9) we have replaced 

(lbe + lea + lac + lea)/(lea + lae + lca) 

by 1 in the same spirit as in Appendix 2. 

(A9) 

(AIO) 
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